Слабое взаимодействие менее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.
Сильное взаимодействие - самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, - проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10-15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.
Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия - это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь. При малом радиусе взаимодействие называют короткодействующим, при большом - дальнодействующим. Сильное и слабое взаимодействия являются короткодействующими. Их интенсивность быстро убывает при увеличении расстояния между частицами. Такие взаимодействия проявляются на небольшом расстоянии, недоступном для восприятия органами чувств. По этой причине эти взаимодействия были открыты позже других (лишь в XX веке) с помощью сложных экспериментальных установок. Для объяснения малого радиуса действия ядерных сил японский физик Х. Юкава в 1935 высказал гипотезу, согласно которой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом некоторой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряженными частицами, согласно квантовой электродинамике, осуществляется посредством обмена "частицами света" - фотонами. При этом предполагалось, что существует специфическое взаимодействие, приводящее к испусканию и поглощению промежуточной частицы - переносчика ядерных сил. Другими словами, вводился новый тип взаимодействий, который позже назвали сильные взаимодействия. Исходя из известного экспериментального радиуса действия ядерных сил, Юкава оценил массу частицы - переносчика с. в. Такая оценка основана на простых квантовомеханических соображениях. Согласно квантовой механике, время наблюдения системы ?t и неопределённость в её энергии ?E связаны соотношением: ?E?t Сильные взаимодействия h, где h -планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой m (т. е. энергия системы меняется согласно формуле относительности теории на величину ?E = mc2, где с - скорость света), то это может происходить лишь на время ?t Сильные взаимодействия h/mc2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка h/mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) h/mc, т. е. радиус действия сил, переносимых частицей с массой m, должен составлять величину h/mc. При радиусе действия Сильные взаимодействия10-13 см масса переносчика ядерных сил должна быть около 300 me (где me - масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, ?). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных ?± и нейтрального ?0-мезонов с массами соответственно 273 те и 264 me, взаимодействие передаётся большим числом др. мезонов с большими массами: ?, ?, ?, К, . и т. д. Кроме того, определенный вклад в С. в. (например, между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13 см, т. е. определяет характер С. в. на малых расстояниях, экспериментальное изучение различных реакций с адронами (таких, например, как реакции с передачей заряда - "перезарядкой": ?- + р > ?0 + n, К- + р > K0 + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами.