Салициловая кислота
Салициловая кислота – фенольное соединение, важный молекулярный эффектор. Она регулирует ряд важных процессов: термогенез, защитные ответы на атаки патогенов, синтез этилена и созревание плодов. Также существуют данные, что SA участвует в регулировании ответов растений на абиотические стрессы, в частности УФ излучение и озон [15].
SA – системный сигнал для SAR. Исследования показали, что большинство накапливающейся SA (69%) было синтезировано и экспортировано из инокулированных листьев. В других исследованиях было показано, что SA была найдена и в инфицированных листьях и синтезирована de novo [6].
Последние данные подтверждают, что сигнализирование может происходить и за счет преобразования SA в летучее соединение метиловый салицилат, который может вызвать устойчивость не только в незараженных частях этого самого растения, но также и у соседних растений [6].
Синтез
SA
SA может быть синтезирована в растениях путем превращения фенилаланина в транс-коричную кислоту, которая синтезирована ферментом фенилаланин аммиак-лиазой (phenylalanine ammonia-lyase или PAL). Фермент PAL является светоиндуцируемым. Поэтому в темноте накопление SA происходит медленно, а защитные реакции протекают с низкой интенсивностью. Недавно было показано, что SA может также синтезироваться из бензойной кислоты (ВА), которая может быть гидраксилированна в SA [1].
Также было показано, что как и у бактерий SA может синтезироваться из хоризмата через изохоризмат. Экспрессия бактериальных ферментов, катализирующих эти реакции изохоризмат синтаза 1 (ICS1) и изохоризмат пируват лиаза 1 (IPL1), в табаке и Arabidopsis привело к повышенному накоплению SA и устойчивости к патогену. Изохоризматный путь синтеза в растениях – главный источник синтеза SA.
SA можно обнаружить в двух формах в растении: (i) свободная SA, которая возможно имеет сигнальную функцию и (ii) главная запасающаяся форма Я-O-D-глюкосалициловая кислота (SAG) [5]. Этот гликозид ассоциирован с клеточной стенкой и расщепляется специфической в-гликозидазой. При действии стрессов нетравматического типа происходит высвобождение в-гликозидаз клеточной стенки. Затем происходит расщепление гликозида и высвобождению свободной SA. Таким образом, превращение SAG в свободную и активную SA может значительно повлиять на сигнальную передачу SA [1].
Транспорт системного сигнала
SA была обнаружена во флоэме нескольких видов растений, это позволило предположить, что именно это вещество является флоэмно-транслоцируемым сигналом. Эксперименты подтвердили, что сигнал SAR инициируется в инокулированных листьях, и транспортируется по проводящей системе (флоэма) к верхним листьям [1, 6].
Активные формы кислорода (ROS)
Существует несколько салицилат-связывающих белков. Главными мишенями для внеклеточной SA являются внеклеточные каталазы и пероксидазы. Присоединяясь к молекулам этих ферментов, SA изменяет их каталитическую активность и запускает окислительную вспышку – резкое усиление синтеза активных форм кислорода. Салициловая кислота является ключевой молекулой, запускающей в растительном организме этот процесс [1].
Во внеклеточном пространстве накапливается перекись водорода: HO2∙ + O2∙ ─ + Н+ ↔ Н2О2 + О2 либо 2O2∙ ─ + 2Н+ ↔ Н2О2 + О2, это приводит к накоплению других активных форм кислорода – супероксидного аниона (O2∙ ─), гидроксильного радикала, синглетного кислорода и др. Во внеклеточном пространстве растения происходит окислительная вспышка, она разрушительно воздействует на патогенные микроорганизмы.
Поскольку H2О2 не имеет неспаренного электрона, она может пересекать биологические мембраны. Протонирование O2∙ ─, которое происходит более легко при низком рН, дает гидропероксильный радикал HO2, он может пересекать биологические мембраны примерно так же эффективно, как и H2О2. HO2∙ может непосредственно атаковать жирные кислоты, и, как показано, превращает линоленовую, линолевую и арахидоновую кислоты в перекиси липидов.
Также перекись водорода является главным вторичным мессенжером сигнала индуцирования устойчивости. SA запускает экспрессию PR-генов благодаря ей. Перекись водорода способна индуцировать активность ряда важных ферментов, таких как NADH-дегидрогеназ (NADH-DH) хлоропластов, что также играет определенную роль в генерировании SAR.
Второй группой салицилат-связывающих белков являются пероксидазы - регуляторные ферменты. Кислые пероксидазы клеточных стенок способны связывать SA, фермент начинает генерировать перекись водорода с использованием NADPH.