Конечна или бесконечна Вселенная, какая у нее геометрия – эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если, как это считают в настоящее время, скорость «разлета» галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10–20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра. Проще говоря, Вселенная тогда представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Такой процесс называется Большим взрывом
.
При данной оценке времени образования Вселенной предполагалось, что наблюдаемая нами сейчас картина разлета галактик происходила с одинаковой скоростью и в сколь угодно далеком прошлом. А именно на таком предположении и основана гипотеза первичной Вселенной – гигантской «ядерной капли», пришедшей в состояние неустойчивости.
В настоящее время космологи предполагают, что Вселенная не расширялась «от точки до точки», а как бы пульсирует между конечными пределами плотности. Это означает, что в прошлом скорость разлета галактик была меньше, чем сейчас, а еще раньше система галактик сжималась, т.е. галактики приближались друг к другу с тем большей скоростью, чем большее расстояние их разделяло. Современная космология располагает рядом аргументов в пользу картины «пульсирующей Вселенной».
Такие аргументы, однако, носят чисто математический характер; главнейший из них –
необходимость учета реально существующей неоднородности Вселенной. Окончательно решить вопрос какая из двух гипотез – «ядерной капли» или «пульсирующей Вселенной» – справедлива, мы сейчас не можем. Потребуется еще очень большая работа, чтобы решить эту одну из важнейших проблем космологии.
Идея эволюции Вселенной сегодня представляется вполне естественной. Так было не всегда. Как и всякая великая научная идея, она прошла долгий путь своего развития, борьбы и становления. Рассмотрим, какие этапы прошло развитие науки о Вселенной в ХХ столетии.
Современная космология возникла в начале XX в. после создания релятивистской теории тяготения.Первая релятивистская модель, основанная на новой теории тяготения и претендующая на описание всей Вселенной, была построена А. Эйнштейном в 1917
г. Однако она описывала статическую Вселенную
и, как показали астрофизические наблюдения, оказалась неверной.
В 1922–1924 гг. советским математиком А.А. Фридманом были предложены общие уравнения для описания всей Вселенной, меняющейся с течением времени. Звездные системы не могут находиться в среднем на неизменных расстояниях друг от друга. Они должны либо удаляться, либо сближаться. Такой результат – неизбежное следствие наличия сил тяготения, которые главенствуют в космических масштабах. Вывод Фридмана означал, что Вселенная должна либо расширяться, либо сжиматься (модель пульсирующей Вселенной).
Отсюда следовал пересмотр общих представлений о Вселенной. В 1929 г. американский астроном Э. Хаббл
(1889–1953) с помощью астрофизических наблюдений открыл расширение Вселенной
, подтверждающее правильность выводов Фридмана.
Начиная с конца 40-х годов нашего века, все большее внимание в космологии привлекает физика процессов на разных этапах космологического расширения. В выдвинутой в это время Г.А. Гамовым
теории горячей Вселенной
рассматривались ядерные реакции, протекавшие в самом начале расширения Вселенной в очень плотном веществе. При этом предполагалось, что температура вещества была велика и падала с расширением Вселенной. Теория предсказывала, что вещество, из которого формировались первые звезды и галактики, должно состоять в основном из водорода (75%) и гелия (25%), примесь других химических элементов незначительна. Другой вывод теории – у сегодняшней Вселенной должно существовать слабое электромагнитное излучение, оставшееся от эпохи большой плотности и высокой температуры вещества. Такое излучение в ходе расширения Вселенной было названо реликтовым излучением