Эту операцию мы уже, по существу говоря, проделывали, когда рассматривали возможность встраивания фрагментов чужеродной ДНК, длиною в тысячи нуклеотидов, в плазмиды. Полная последовательность нуклеотидов для множества плазмид (находящихся в продаже) хорошо известна. Таким образом мы можем естественным образом связать начало (и конец) секвенируемого фрагмента ДНК с известной последовательностью нуклеотидов плазмиды.
Встает вопрос: как узнать точно в какое место плазмиды включился наш фрагмент и как его потом «вырезать» обратно вместе с известным, ему предшествующим куском плазмиды — достаточным по своим размерам для посадки на него надежного праймера? Для ответа на этот вопрос следует вспомнить о существовании (и доступности на рынке) плазмид с «поликлоновым сайтом», насчитывающим несколько десятков пар оснований, искусственно синтезированном так, чтобы содержать в себе «сайты узнавания» для многих рестриктаз.
Для решения нашей задачи надо подобрать две рестриктазы, сайты узнавания которых в пределах поликлонового сайта отстояли бы друг от друга достаточно далеко, на расстояние, большее, чем длина будущего праймера секвенирования. Одна рестриктаза, сайт узнавания которой находился бы в «конце» поликлонового сайта (если мы определились с направлением будущего секвенирования), должна послужить для встраивания подлежащего секвенированию фрагмента ДНК. Вторая — для его последующего вырезания из плазмиды вместе с участком поликлонового сайта разделявшим сайты узнавания обеих рестриктаз. Вся последовательность нуклеотидов на этом участке известна и потому синтезировать комплементарный к нему праймер не представит труда.
Последующее секвенирование таким образом удлиненного фрагмента нашей ДНК либо начнется с его первого нуклеотида, либо с нескольких предшествующих нуклеотидов, относящихся к копированию присоединенного участка поликлонового сайта. Эти нуклеотиды легко узнать и отделить от последовательности самого исследуемого фрагмента ДНК.
Естественно, что ввиду такой определенности ситуации, фирмы-поставщики плазмид с поликлоновыми сайтами предлагают и готовые праймеры (обычно 18-членные), которые они вправе называть «универсальными», ибо они пригодны для секвенирования любых фрагментов ДНК, таким образом подготовленных.
В последнее время для умножения количества секвенируемой ДНК клонированием и создания места посадки праймера стали широко использовать бактериофаг М13. Это — нитевидный фаг, содержащий однонитевую, полностью расшифрованную ДНК. В нее, с помощью рестриктаз, точно так же, как в плазмиду можно встроить чужеродную ДНК. Попадая в клетку E.coli этот фаг приобретает двунитевую структуру и таким образом размножается в клетке («репликативная форма») до более чем 100 копий. Во время деления клетки продолжает размножаться и фаговая ДНК. Но одновременно с этим клетка E.coli (не погибая!) выбрасывает в питательную среду готовые фаговые частицы опять в виде однонитевой ДНК, одетой белком. После удаления E.coli центрифугированием, свободные фаги обрабатывают фенолом и получают однонитевую ДНК фага вместе с изначально встроенным в нее фрагментом чужеродной ДНК. Разобравшись таким образом с проблемой праймера, займемся другими важными практическими аспектами секвенирования ДНК.
Во-первых отметим, что в процессе секвенирования матричная ДНК должна все время оставаться строго однонитевой, без возможных «шпилек» — локальных двунитевых участков, образующихся в силу наличия в этой ДНК близко расположенных, пусть небольших, но комплементарных последовательностей. То же самое относится и к меченым отрезкам ДНК в процессе их разделения электрофорезом. Как мы увидим ниже, в процессе комплементарного синтеза по методу Сэнджера (он повторяется многократно — в несколько циклов) такая опасность не возникает, так как в каждом цикле имеется стадия предварительной полной денатурации при температуре 96°С, а само копирование осуществляется при температуре 60°С. Но электрофорез приходится проводить в сильно денатурирующей среде: 80% -ном растворе формамида, содержащим 5 mM раствор ЭДТА Во-вторых, следует озаботиться тем, чтобы при электрофорезе количество флюоресцентно меченого материала в каждой полосе (даже такой, в которой содержится наименьшее число отрезков ДНК) было достаточным для надежной регистрации. Вместе с тем, этого желательно добиться без чрезмерного расходования исходного материала ДНК, который обычно дефицитен.